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In the present work, a polyethylene chain with N =200 CH2 units was simulated using replica exchange
molecular dynamics (REMD). Simulations were performed in a broad temperature range and for intra-
chain interactions varying from the fully interacting to the ideal spring chain.

Our work demonstrates that REMD is a very efficient method to obtain equilibrium data. It is found
that the coil-to-globule transition is dominated by the vdW energy, whereas the globule-to-folded chain
transition is accompanied by transitional behavior in the torsion and vdW energies. Our data clearly
show that for the chain length considered here, the chain folded crystal to globule transition is
a continuous transition. Nevertheless, we can establish with good accuracy the equilibrium transition
temperature for the chain folded crystal to globule transition.

A set of orientational order parameters was used to investigate the order in the polymer chain. At the
globule-to-folded chain transition an abrupt change in the value of the order parameter is observed,
whereas there is no or almost no change in the value of the order parameter at the coil-to-globule
transition temperature. The (apparent) order in the disordered globular and coiled states indicated by
some studied order parameters is related to the definition of the order parameter and depends on the
chain length of the polymer.

Below the equilibrium melting temperature the (largest principal component of the) radius of gyration
and the equilibrium lamellar thickness of the folded chain crystal decrease with increasing temperature,
which gives support to the theory of Muthukumar but is opposite to the prediction of classical crys-
tallization theories. The agreement between simulations and theory may hint to universal behavior of
the relative equilibrium thickness versus the relative super cooling.

© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

For many decades the properties of the single polymer chain
have been actively studied by experiment [1—18], theory [19—23]
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and simulation [24—39]. The single chain behavior is elementary
to understand the properties of polymers in the condensed state
(pure as well as in mixtures and solutions) but the single chain has
also immediate relevance in nano-sciene, nano-technology and
experimental techniques, such as AFM, which allows for the direct
study of single chains. Swislow et al. [40] were the first to experi-
mentally observe in dilute solution below the ®-temperature the


mailto:Ting.Li@chem.kuleuven.be
mailto:E.L.F.Nies@tue.nl
www.sciencedirect.com/science/journal/00323861
http://www.elsevier.com/locate/polymer
http://dx.doi.org/10.1016/j.polymer.2010.09.019
http://dx.doi.org/10.1016/j.polymer.2010.09.019
http://dx.doi.org/10.1016/j.polymer.2010.09.019

T. Li et al. / Polymer 51 (2010) 5612—5622 5613

collapse from the expanded coil to the dense globule of isolated
atactic polystyrene chains. However, the expanded coil and the
globular state are not the only possible chain conformational states
and depending on the details of the intra-chain and chain—solvent
interactions other conformational states may exist for non-crys-
tallisable polymer chains [30,41—43].

From the simulation and theoretical points of view the existence
of different single chain conformational states and transitions
between them has been studied in quite some detail [24,44]. For
instance, the occurrence of the globular state upon going from the
expanded coil to the chain folded chain crystal and the length/
diameter aspect ratio of the chain folded single molecule crystal
sensitively depends on the chain stiffness [41,45,46] and the chain
length [44].

Also the dynamic process of chain folding upon cooling or
heating, the subsequent rearrangement and melting of the chain
folded crystal have been investigated intensively by computer
simulation. For example, it has been observed [47] that the melting
behavior of the single chain folded crystal depends on the heating
conditions. This can be seen as a consequence of the very rugged
free energy landscape of the single chain at the low temperatures
where the chain folded states are preferred. This also brings to
attention one of the problems with some molecular simulation
techniques: different chain folded conformational states are very
likely separated by high free energy barriers, making it very difficult
to realize transitions from one state to the other in the time of
a single Molecular Dynamics or conventional Monte Carlo simula-
tion run. As a consequence the simulation does not necessarily
represent a proper ensemble average overall relevant chain
conformational states. Therefore, the simulation results are not
necessarily representative of the behavior of real chains observed in
typical experiments, in which the time of the experiment is suffi-
ciently long and/or the number of chains probed by the experiment
is sufficiently large to sample the different conformational states
much easier. To overcome the problem of poor sampling of the
rugged free energy landscape, advanced simulation methods have
been developed. In particular expanded ensemble simulation
methods, such as the replica exchange (REM) or parallel tempering
(PT) [48—51], multicanonical ensemble method (MUCA) [52—54]
and four dimensional expanded ensemble algorithm [55,56], have
proven to be very efficient.

In this work we apply for a polyethylene chain of finite length
(200 CH2 units) canonical MD simulations combined with the
replica exchange molecular dynamics (REMD) [57—59] to explore
a wide range of temperatures and variations in intra-chain inter-
actions enabling us to efficiently sample the whole relevant phase
space and to provide simulation data of high quality which are
representative for the equilibrium behavior of the chain molecule;
also at the lowest investigated temperatures. Using the simulation
data we perform a set of thermodynamic integrations to determine
the absolute free energy, entropy and internal energy of the single
chain as a function of temperature. Our data allow for a detailed
analysis of the thermodynamics, the conformational properties and
ordering of the chain in the encountered conformational states.
Finally, our data also allow us to test a recent theoretical develop-
ment considering the chain crystallization and melting from
a thermodynamic equilibrium perspective.

The paper is organized as follows. First the model and simula-
tion parameters are described. Then, the simulation results of the
thermodynamic and structural analysis are presented and finally
the data are used to make contact with the recent theory of
Muthukumar on chain crystallization and melting emphasizing the
importance of the chain folds in determining the equilibrium
behavior of the chain folded crystal. Finally, some conclusions are
made.

2. Simulation details

In this study, a linear polyethylene chain with chain length
N =200 CH2 groups was modeled as a bead-spring chain using the
united atom (UA) approximation for the CH2 units and making no
distinction between middle and end groups. The united atom
approximation is widely used in the simulation of macromolecules
[25,60—62]. Four types of potentials are included in our simulation,
i.e. bond stretching, angle bending, torsional rotation and van der
Waals (vdW) interactions between atoms separated more than two
covalent bonds along the polymer chain (i.e. including the 14
interaction). The potential energy expressions and the parameter
values for the united atom model are taken from the DREIGING
force field [63]:

U = Upond + Uangle + Utorsion + Uvdw: (1)

inwhich, Upong = 3° 3Ky (I = 10)*, Uangie = 3= 3Ka(0 — 00)* Urgrsion =
> 3Ke{1 = cos[n(p — ¢o)]} and Uyqw = > Y 4e[(9)'? — (9)°] (The
summation denotes that the potential energy terms are summation
for all bonds, angles, torsion angles and non-bonded pairs respec-
tively.) and parameter values are given in Table S1 of the Supple-
mentary information.

In the following we use reduced units. The van der Waals
diameter o, the energy parameter ¢ and the mass of the united atom
are taken to define reduced units that are denoted by the super-
script asterisk, for example, T* = kgT/e, p* = pa, t* = t\/e/m/a,
" =r/e,v" = vy/m/e and C, = C,/kg. For the particular param-
eter values used in this study (see Supplementary information,
Table S1) the following conversions are obtained: t=1.488 x t*
with the time t in picosecond, and T=99.921 x T* with the
temperature T in Kelvin. In the constant temperature REMD
simulations massive Nose-Hoover chain (MNHC) thermostat [64]
was employed and the reduced time step was At* = 1.6427 x 103
(or 2.444 femtosecond in real units).

A REMD or parallel tempering molecular dynamics (PTMD)
simulation with in total 77 temperatures, covering a wide
temperature range from 252 K to 1511 K, was executed. The set of
reduced temperature values are given in Table S2 of the Supple-
mentary information.

In a second REMD run the following A-dependent potential was
used

U)‘(A) = Ubond + Uangle (A) + Utorsion(;{) + UvdW(A)v (2)

in which Upong = 33Ky (I - Ip)* as in equation (1), Uypgle(d) =
Y 3Ka(0 = 00)%, Utorsion(d) = S 34K {1 — cos[n(¢ — ¢o)]} ~ and
Uyaw(2) = 3252 4¢[(59)'? — (3]

When A =1, U;(4) is the same as in the original force field. When
A =0, Upond is the only energy contribution representing the ideal
spring chain.

The second REMD simulation was run with in total 29 A values in
the interval 0<A < 1, which are also provided in Table S3 the
supplementary information.

3. Results and discussion

3.1. Thermodynamics-heat capacity, potential energy probability
density distribution and absolute free energy

3.1.1. Heat capacities

It is straightforward to calculate the isothermal heat capacity at
constant volume from the simulation data. In Fig. 1. the isothermal
heat capacities are shown for the total energy (kinetic plus
potential), the total potential energy, and the different
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Fig. 1. Reduced specific total heat capacity (squares) and the contributions from the
total potential energy (circles), the bond (upward triangles), angle bending (downward
triangles), torsion (diamonds) and vdW (leftward triangles) energies as functions of
temperature.

contributions to the potential energy (vdW, bonding, angle and
torsion potential energies) and are calculated from

C\*/,total = <H>*<2H> (3a)
(15—

CV potential = = (3b)
G = <u$5WzT—* ><2u;dw>2 ”
. <u;;gnd><T* ><2u;;0nd>2 ”
LSS
o (Vihn) = (Vrsn)” o

(r)’
with H* = U* 4+ K*, the Hamiltonian and K* the kinetic energy of the
system in reduced units.

As we can see the difference between the total heat capacity
(from kinetic and potential energy) and the heat capacity derived
from the total potential energy is within simulation uncertainty 1.5
at all temperatures in agreement with the equipartition theorem.
This is also a proof that our simulation was very well equilibrated in
momentum space, providing evidence of the correct and efficient
working of the MNHC thermostat.

The heat capacities calculated from the bonding and angle
energy fluctuations are constant at all temperatures, indicating that
these degrees of freedom are not responsible for the transition
behavior seen in the total heat capacity. In this respect, the

contributions from the van der Waals interaction and the torsion
conformational energy are the most interesting.

At very low temperatures, the CH2 segments are practically
fixed to the lattice positions of the crystal lattice and only local
vibrations and position adjustments are allowed. This is reflected
by C\*/,vde which is flat in Fig. 1. when T* < 3.53. As the temperature
increases, C\*/,vdW' C\",_’torsion and C, o, have a sharp peak at T" =4.23
clearly indicating the occurrence of a transition (i.e. the chain fol-
ded lamellar crystal to globule transition to be discussed in more
detail below). At the transition temperature the polymer chain
experiences substantial fluctuations in the torsion energy. At the
same time, the vdW energy is also fluctuating in order to re-arrange
the CH2 segments from the regular crystalline configuration into
a more liquid like organization in the globular state. From the
transition temperature T =4.23 all Cys decrease with increasing
temperature. A shoulder peak in Cj 4y and Gy ., but not in
C\*,‘mrsion can be observed at the coil-to-globule transition temper-
ature (to be discussed below in relationship to the temperature
dependence of the radius of gyration of the chain), indicating that
the coil-to-globule transition is mainly caused by the van der Waals
interaction and has little to do with the local chain conformation. In
fact, the observation is very similar to the collapse transition
observed in Lennard-Jones clusters [65].

3.1.2. Potential energy probability density distributions

In Fig. 2 the potential energy probability density distribution
functions of the 77 different temperatures are presented. It can be
seen that at each temperature the potential energy probability
density distribution curve has a smooth Gaussian shape. This
indicates that in the parallel tempering simulation we have ach-
ieved efficient and sufficient sampling of the phase space also at the
lowest temperatures, which is not realized in a conventional
simulation. The distribution curve in red (shown separately in the
inset of Fig. 2.) is at the temperature T" =4.23 where the potential
energy probability density distribution height reaches a local
minimum. At this temperature also a transition was observed in
several of the heat capacities. Below this temperature, the heights
of the probability density distributions increase almost linearly
with decreasing temperature. For higher temperatures, i.e.
T* > 4.23, the height of the energy probability densities increase
until a maximum at T* = 4.64 and then monotonically decreases to
high temperature.
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Fig. 2. Potential energy probability density functions of the 77 canonical ensemble
(NVT) replicas in our REMD simulation. The distribution shifts right (higher energy)
with increasing temperature. The inset shows the PDF at the melting point T"=4.23.
No bimodality can be seen in the distributions.
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It is important to note that at T* =4.23 or any other temperature
we do not observe a bimodal energy probability density distribu-
tion, indicative of the coexistence of two states as in a first order
phase transition. This may come as a surprise; however, the pres-
ence or absence of a bimodal energy probability density distribu-
tion may depend sensitively on the specific interaction model used
and on the chain length. For example, it was shown that variations
in the strength of the bending potential in a bead-stick chain model
with angle bending and square-well non-bonded interactions,
a bimodal potential energy distribution changed from bimodal to
unimodal [30]. In a similar manner a freely jointed square-well
chain with a tunable width of the non-bonded square-well
potential bimodal potential energy distributions were observed for
chains of 32mer and 64mer, which could clearly be interpreted in
terms of a first order transition. However, reducing the width of the
square-well to a slightly smaller value, the energy distribution of
the 64mer changed from bimodal to unimodal. The authors
concluded that the range of the attraction is crucial for the bimo-
dality of the potential energy distribution and the strength of the
first order transition to a solid in a finite system [65]. Effects of the
potential function parameters have been observed also in system-
atic studies in the crystallization and melting transition of polymer
melts. Using a carefully tuned coarse grained potential model
Meyer et al. studied the crystallization and melting behavior of
polymer melts as a function of chain length and parameter values in
the coarse grained potential model [66—68]. For example it was
shown that the angular interaction in the coarse grained potential
model on the crystallization and melting behavior influences the
volume change upon cooling and heating at the transition
temperature (T and Tp). With increasing flexibility the volume
changes at the transition temperatures were observed to diminish
and to become more gradual [67,68]. When the angular potential
was removed completely the system did not crystallize but vitrified
[66]. These all may be indications that the transitional behavior is
changing from clear first order to a more continuous transition.

3.1.3. Average potential and total energy, absolute free energy,
absolute entropy and absolute energy

Fig. 3 shows the average potential energy and total energy
(potential plus kinetic) as a function of temperature. Also here
a rounded but recognizable step is found around the transition
temperature (T" =4.23).
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Fig. 3. The total energy (circles) and potential energy (squares) of the PE model chain
as a function of temperature.

The parallel tempering MD simulation run can be used to get the
free energy difference of the real interacting chain at temperatures
T and Ty from the following thermodynamic integration

i) - ()

T T

ST

and

A" (T) - ;

I
0

s«

"(To) + 17843 (77, Tp) (4b)

where A*(T) and U*(T") are the reduced Helmholtz free energy and
total energy of the system at temperature T* respectively. The
angular brackets in equation (4a) indicate as before the ensemble
average.(U"(T™)) is obtained directly from the results of the REMD
simulation, which has been presented in Fig. 3. T, is a reference
temperature which we have chosen here to be the highest
temperature 15.121 in reduced unit. The free energy change
AA} (T, Ty) calculated by this integration, equation (4a), is shown in
Fig. 4.

Moreover, by choosing an appropriate reference state one can
further calculate the absolute free energy of the fully interacting
chain. In the following we calculate from another REMD simulation
at the reference temperature TS the free energy difference between
the fully interacting chain and the ideal spring chain, defined in the
Section Simulation details. In this second parallel tempering simu-
lation, the strengths of the angular and torsion potentials as well as
the diameter ¢ in the Lennard-Jones potential are changed gradu-
ally from zero to the actual values defined in the force field. The free
energy difference between the ideal spring chain and the fully
interacting PE chain is then determined at the chosen reference
temperature Tg from the following A-integration.

AA; (’L TS) = A (A’ TS) - A;deal spring chain (TS)

_ 0/ <d”d$>dx (5a)

and
* * * *k * £
A (A'/ TO) = Ajdeal spring chain (T0> = DA, (X’TO> (5b)
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Fig. 4. The free energy difference AA] of the PE model chain at different temperatures
with respect to the free energy at the highest temperature Ty = 15.121
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The free energy difference between the ideal spring chain and the
chain with U*(2) is presented as a function of 1 in Fig. 5.

At A =1 the fully interacting chains is recovered and the difference
in free energy between the ideal spring and the real chain can be
determined. The free energy difference between the real chain and
the ideal spring chain is found to be AA5 (A = 1,T;) = 2541.119.

Finally, the free energy of the ideal spring chain A, spring chain (To)
can be calculated analytically. The details of this are given in
the Supplementary Information. For the PE chain used in our simu-
lations, N =200, kpong=700 kcal-mol~! A=2 Iy=153A and
Ai*deal spring chain(TS) = 249.092.

The reduced absolute free energy of the real PE chain as a func-
tion of temperature (see equation (6)) presented in Fig. 6 is
obtainefl fi'on: the combination of A}, spring chain(To)» AAS(A,T5)
and AA; (T, T;) according to

A*(T) = g(A:deal spring chain (TS) + AAZ <A =1 TS))

+ T AA; (T*,T(;) (6)
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Fig. 6. The absolute free energy (squares), internal energy (circles), entropy (upward
triangles) as functions of the reduced temperature. The negative of the product of
temperature and entropy (downward triangles) is also presented for the convenience
of checking the contribution to the total free energy.
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Fig. 7. (a) Mean squared radius of gyration (Rg"?) (downward triangles) and its prin-
cipal components (L) (upward triangles, the largest component), (L;?) (circles) and
(L;Z) (squares, the smallest component) as functions of temperature. The inset presents
an enlarged view of the lower temperature region. (b) The ratio between (L?) and
(L3?) as a function of temperature.

In addition, the entropy and the internal energy of the PE
chain can be calculated from SY(T") = fdAt;gy) and
EY(T") = AY(T") + T"S"(T"). The reduced entropy and reduced
energy of the real PE chain as a function of temperature are pre-
sented in Fig. 6. Note that the reduced energy obtained in this way
is, as it should be, in quantitative agreement with the total energy
directly obtained from the simulations, proving the correctness and
internal consistency of our calculations.

We can see that both the internal energy and entropy
increases monotonically with increasing temperature and there is
an obvious maximum in the free energy. Similar features for
internal energy and entropy are also seen in the work of Rampf
et al., [44] where the free energy and entropy of a bond fluctua-
tion model (BFM) chain with square-well interactions with
a similar length are presented as functions of temperature. In
many studies, single chain folding is addressed as first order
phase transition. However, for the PE chain model studied here
only smoothed stepwise changes are seen in the entropy and
the internal energy at the transition temperature T*=4.23 and in
the free energy a discrete change in slope is not observed at the
transition temperature.
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3.2. Radius of gyration

The radius of gyration Rg is a basic measure of the overall size of
a chain molecule. To get insight in the average shape of a chain
molecule Rg is usually decomposed into the three components
along the principal axes of the moment of inertia of the polymer
chain, which are denoted as Ly, L, and L3 with Ly the largest
component and L3 the smallest one [69]. In Fig. 7(a), the reduced
mean squared radius of gyration (Rg™2) and its three principal
components (L;?), (L;?) and (L3?) are shown as functions of reduced
temperature.

In Fig. 7(a) two transitions can be clearly seen in the whole
temperature range. The one at higher temperature (T*=10.83)
represents the coil-to-globule transition. Above this temperature
the chain exists in an expanded coil state characterized by a high
ratio of (L}?) : (L;?) (See Fig. 7(b).). This indicates the chain has
a highly non-spherical instantaneous shape in this regime. As the
temperature decreases below the coil-to-globule transition
temperature, the polymer chain collapses into a compact globule.
The ratio of (L}?) : (L;?) decreases substantially, indicating that the
chain shape becomes more spherical although (L}?) : (L) will
never go exactly to 1. The coil-to-globule transition is caused by the
attractive van der Waals interactions and the tendency to make
a more spherical globule can be seen as a consequence of the chain
to minimize its surface free energy at higher globular segmental
number density [70].

As the temperature decreases, the overall mean squared radius
of gyration (Rg"?) reaches a minimum at T*=5.04 indicating the
chain contracts into a very condense globule. After reaching its
minimal size in (Rg*2) the chain shows a new quite sharp increase
at T"=4.23, which can be attributed to the crystallization of the
single chain. In this low temperature regime the polymer chain
transforms from the condensed globule to a chain folded lamellar
state, in which the chain folds back and forth and the stems of chain
segments in the all trans- conformation arrange parallel with each
other. In Fig. 7(a) we see that (L}?) increases while (L’?) and (L;?)
decrease, which indicates that the folded chain lamella has an
overall rod-like shape, with (L}?) that can be seen as a measure of
the squared thickness of the lamella, i.e. the squared fold length of
the lamellar crystal. As the temperature continues to decrease,
T < 4.0, in Fig. 7(a) we see a small but systematic increase of <L§2>
and decrease of (L;?) and (L3?) indicating that the lamellar fold
length increases with decreasing temperature.

The observation of chain folding of the single PE chain in
simulations is not new and is well documented, dating back to the
original work of Kavassalis and Sundararajan using conventional
MD simulations [71]. Following these authors many single chain
simulations have been reported, studying the single chain behavior
under various conditions. For instance, Fujiwara et al. [72] observed
in a conventional MD simulation of a single chain molecule that
upon quenching the chain from high temperature well above the
equilibrium melting temperature T, to several low temperatures
chain folding occurs. Lamellar thickening is observed with reduced
quenching depth. Similar behavior was also observed by Liu and
Muthukumar [73] Zhang et al. [ 74] found, using the same force field
as in the present work, that a folded PE chain, well equilibrated at
a particular crystallization temperature, also thickened upon
heating to a temperature closer to T9. These findings were inter-
preted to be in agreement with the results of classical kinetic
crystallization theory which predicts that the lamellar thickness of
a chain folded crystal is inversely proportional to the super cooling
AT = T9 — T, and that lamellar thickening should occur upon
heating the chain folded crystal.

In stark contrast with these studies of the kinetic process, we
observe a decrease in lamellar fold length upon approaching the

equilibrium melting temperature of the chain folded crystal. We
should emphasize that in our REMD simulations we obtain ther-
modynamic equilibrium data and hence the observed lamellar
thickness represents the equilibrium thickness of the chain folded
crystal which is (virtually) impossible to obtain in a conventional
MD simulation as the chain will be trapped in a chain folded
structure that is merely one possible realization of the chain folded
crystal. In our REMD simulations we get a significantly improved
sampling of the whole relevant phase space and thus obtaining
more accurate information on the equilibrium chain folded crystal
thickness.

3.3. Orientational order parameters

3.3.1. Order parameters

To quantify the ordering in the folded chain structures different
orientational order parameters have already been used [75]. A first
choice to define an order parameter is to build the ordering tensor
[76,77].

1
b2
where u; and u; are unit vectors defining the directions of the all
trans stems, ujuj denotes the dyadic tensor product, d;; denotes the
Kronecker delta and (---) denotes the usual thermodynamic
ensemble average overall the all-trans stem pairs. More specifically,
in an all-trans stem, all the torsion angles formed by at least four
consecutive chain units fall in the angular ranges [-m, —57/6) or
(5m/6, m]. Then the two united atoms at the two ends of the all-
trans stem are used to define the vector u;. S is a 3 x 3 tensor
matrix in a 3D Cartesian coordinate system. By diagonalizing Sj;,
three eigenvalues A;, A3 and A3 are obtained, which can be used
directly as measure of the ordering of all-trans stems. The largest
eigenvalue A; provides information on the orientational order along
direction of its eigenvector n and the two eigenvalues, A and 13
provide information on the orientational order in the two mutually
perpendicular directions at right angles to n.

Another method to define order parameters makes use of the
second Legendre polynomial

S (Buiuj — 61]) (7)

20 _
3cos?f 1> 8)

(Py(cost)) = < 3

where 6 is the angle between a preferred director n and e.g. the
bond or stem vectors.

For instance, we can use the eigenvector n associated with the
largest eigenvalue A as the director in equation (7) and define an
order parameter, denoted by OP, [76].

Finally, OP; is the order parameter calculated by equation (7)
with the director n the eigenvector associated with the principal
axis associated with Lj, the largest principal component of the
radius of gyration. OP3 has been used by Fujiwara and Sato to study
the bond orientational order [78].

For notational convenience we will denote the eigenvalue 1y
also by OP; [77]. The definitions of all order parameters used in this
work are summarized in Table 1.

Fig. 8 shows the eigenvalues A;, —A2 and —23 as a function of
temperature. A clear transition exists at T =4.23, the same
temperature at which the compact globule transforms into a chain
folded lamella in Fig. 7(a) and (b) and the transition temperature
determined in the thermodynamic properties i.e. the energy
probability density distribution P(U), the heat capacities and the
absolute internal energy and entropy.

The increase of A; denotes that the ordering of the polymer chain
occurs within a very narrow temperature range. Unlike the behavior
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Table 1

Summary of the order parameters used in this work.
Order definition comment
parameter
oP1=) The largest eigenvalue of the ordering Without using any

tensor defined by Eq. (7)

A2 A3 The second largest and the smallest
eigenvalues of the ordering tensor
defined by Eq. (7)

predefined director.
Without using any
predefined director.

OoP, The order parameter defined by Eq. (8) Using predefined
by taking the eigenvector of 1, as the director director
(0):3 The order parameter defined by Eq. (8) by Using predefined

taking the principal axis associated with Ly director
(the largest principal component of radius

of gyration) as the director

of the radius of gyration and its principal components presented in
Fig. 7(a), the order parameter shows no abrupt changes at the coil-
to-globule transition temperature, demonstrating that the orienta-
tional ordering in the globule and coiled state are both low although
a systematical increase of the number of trans- torsional angles can
be observed while lowering the temperature as we shall see in Fig. 8.

In Fig. 8 it can be observed that all the order parameters A, A2
and A3 remain at a non-zero value even at high temperatures;
which can be seen as a consequence of the finite size of the chain
molecule [77,79]. It has been shown that in the limit of complete
disorder (high temperature) 44, and A3 will asymptotically approach
the same value, proportional to 1/N%° and A, will attain a smaller
value; proportional to 1/N with N the number of particles or
segments in the chain. In the ordered state one should approxi-
mately get A3 =~ —21/2—c and X = — /2 + ¢ with c~1/N%®
a positive number, which gives 1; > |A3| > |A3| [77]. In Fig. 8 it can
be seen that these inequalities are met by our data.

In Fig. 9(a) we compare the results for the order parameter
definitions (OP; =44, OP,, and OP3) used in previous studies. All
order parameters give the same transition temperature for the
globule-to-chain folded lamella transformation. This is clarified in
Fig. 9(b), where the first order derivatives of the order parameters
are shown. This indicates all of them could be used as indicators of
ordering in the study of chain folding.

However, differences among these order parameters can be seen
in Fig. 9(a). As already noted in Fig. 8 OP; =1, does not go to zero at
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Fig. 8. Eigenvalues of the order parameter tensor matrix defined by Eq. (7) A;(upward
triangles), A;(downward triangles) and As(circles) as functions of temperature. For the
logarithmic representation, negative values of A, and A3 are presented.

high temperature, the same applies to OP;3 which asymptotically
seems to go to a small but non-zero value at high temperature. On
the other hand the simulation data seem to indicate that, despite the
finite size of the chain, the order parameter OP, approaches zero
asymptotically, as can be inferred from the logarithmic presentation
used in Fig. 8. This makes OP, a convenient order parameter to
quantify order and disorder in the chain molecule. The behavior of
the widely used definition OPs deserves a further remark.

At the low temperature end, OP3 has similar absolute values as
OP;. However, OP; shows a gradual increase of the order in the coil
and globule regimes (5.04 < T* < 10.08) with decreasing tempera-
ture. Thus from OP3 it could be concluded that the order in the
globule is significant and changes continuously. This is in contrast
with the order parameter definitions which do not vary signifi-
cantly in the coiled and globular states and only show more
ordering for temperatures much closer to the transition tempera-
ture. Thus the use of OP3 may lead to wrong conclusions about the
order in the globular state. The difference is related in this case to
the choice of the preferred director n. In OP; we use the direction of
the largest principal component of the radius of gyration of the
chain molecule. In the instantaneous shape we have a preferred
orientation of the chain segments along the director.
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Fig. 9. (a) Comparison of the temperature dependencies of the different order

parameter definitions, OP; (squares), OP, (diamonds), OP; (circles). The order param-

eters are presented both in double logarithmic scale and linear scale (the inset).(b)

First order derivatives of the order parameters shown in plot (a). The minima of these
curves appear at the same temperature T =4.23.
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3.3.2. Correlation between chain dimension and ordering of chain
segments

The similar temperature dependency of the chain dimension
(Rg"?) and the order parameter at low temperatures implies that the
change of the overall chain shape might be driven by the ordering of
the stiff chain segments. In Fig. 10 we present the relationship
between the radius of gyration and its principal components and the
order in the chain molecule, using OP». In this representation the coil
and globule states have practically zero-order parameter, only
marginally varying with the shape of the molecule. We therefore
observe a steep variation of the size parameters with the order,
indicating that there is no correlation between Rg and the order
parameter in the coiled and globular states.

However, as soon as we approach the transition temperature
T =4.23, the radius of gyration and its principle components vary
linearly with the order in the chain. The linear dependence of Rg is
dominated by the change with order of the largest principal
moment of inertia. In contrast the two other principle moments of
inertia decrease linearly with OP,. Wang and Warner [80] derived
a theoretical relationship for the end-to-end distance and its
principal components as a function of the order parameter in an
ideal freely jointed chain of (long) stiff segments. Moreover,
adapting the usual relationship between the radius of gyration and
end-to-end distance (R2) valid for sufficiently linear ideal chains,
viz. (RZ) = {(R?), they predicted the following relationships

<L§2> - %N962<c052(6)> - 11731\152(’;2(20[>2 +1) (9a)
and
(L) = (L) oNeg?(1 — OPy) (9b)

with £gthe bond length of the freely jointed chain.

The interacting chain studied in this work seems to obey
a similar linear relationship between the principle components of
the radius of gyration and the order in the chain (see Fig. 10), with
the provision that the proportionality constants in equation 9(a)
and (b) differ from the theoretical constants derived for the ideal
freely jointed chain.

Again, we should notice that different order parameters may
give different results. For example, using OP; instead of OP,,
a positive slope of Rg versus OP; will be found in the uninteresting
low order region of Fig. 10 (but with OP; now starting at a non-zero
value of ca. OP; ~0.2). However, in the region of higher order the
linear relationship between (the principal components of) the
radius of gyration and the order parameter remains valid.

3.4. All-trans stems and chain folded lamellar crystal shape

3.4.1. All-trans stems

According to our definition of the all-trans segment, the number
and the average length of all-trans segments are calculated and
presented in Fig. 11 as a function of temperature. It is worth
mentioning that the length of an all-trans stem is defined by the
number of the contained chain units instead of the distance
between the end units. From low temperature to high temperature,
the average length of the all-trans segments decreases mono-
tonically; we clearly see a two-stage behavior. At the low temper-
atures the average stem length drops very quickly with increasing
temperature whereas at the high temperatures the average stem
length slowly decays to a limiting value of 2, i.e. the high temper-
ature limiting value. The steepest change of the stem length occurs,
again, at the transition temperature T"=4.23. At the same time,
starting at the low temperature, the total number of the all-trans
segments increases drastically, reaching a maximum at T*=4.54
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Fig. 10. Correlation between mean squared radius of gyration (downward triangles)
and its principal components (L) (upward triangles), (L;?) (circles) and (L3?)
(squares) and the order parameter OP,.

and then decreasing monotonically to high temperature. This is
consistent with the picture of the long rigid segments breaking into
smaller pieces, which cause the shortening in length and the
increase in the number of the stretches of all-trans segments.

In all previous sections we have observed for the different
properties considered the same transition temperature from the
chain folded lamella-to-the globule. The most precise way to
determine the transition temperature is from the first derivative
with respect to temperature as explicitly shown for the order
parameters OPy, OP;, and OP3, in Fig. 9(b). For all other properties
discussed here the first derivative always shows the most
pronounced change at the transition temperature T" =4.23, clearly
indicating the consistency as well as-we believe-the accuracy of
our data.

3.4.2. Lamellar equilibrium thickness

We are now in a position to return to the size of the chain folded
lamellar crystal as a function of temperature. It was already
mentioned in the section on the radius of gyration and its principal
components that our data clearly showed a decrease in the lamellar
fold length (in terms of |/(L;?) of (R;?)) upon approaching the
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Fig. 11. The average number (squares) and average length (circles) of the all-trans
stems as a function of temperature.
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theory (squares) and our REMD simulation (circles) and as a function of super cooling.

transition temperature T"=4.23. This was in contrast with earlier
simulations who discussed the increase of the lamellar thickness
upon approaching the melting temperature in agreement with
conventional crystallization/melting theory [47,72—74,81,82].
However, it is more appropriate to compare our simulation
results for the single chain to a equilibrium theory for single chain
crystallization recently presented by Muthukumar [83,84] and
followed by Larini et al. [19]. Muthukumar derived an expression
for the free energy of the chain folded crystal, including the entropy
originating from the arrangement of the chain segments in the
chain folds of the chain folded crystal. The equilibrium state of the
chain folded crystal corresponds to a lamellar crystal of finite
thickness mainly stabilized by the numerous ways to arrange the
chain segments in the fold loops. According to Muthukumar
the equilibrium thickness of the single chain crystal, defined by the
stem length, decreases with decreasing super cooling, reaching
a finite thickness at the equilibrium melting temperature of the
chain folded crystal. In Fig. 12 we present the relative average stem
length ((Lstem(T")))/((Lstem(Ty))) as a function of the relative super
cooling ((AT")/(Ty)) = (T, — T)/(Ty,)), with T*=4.23, the chain
folded lamellar crystal to globule transition temperature determined
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Fig. 13. The equilibrium lamella thickness at Ty,calculated by Muthukumar (squares)
and from our REMD simulation data (circle). The dotted line is a fit of power function
to guide the eye.

in our simulations. In this representation we can compare imme-
diately with the data of Muthukumar [85].

Our simulation results are in semi-quantitative agreement with
these theoretical predictions and are, as far as the authors are
aware, the first quantitative simulation results that confirm these
theoretical predictions, signifying that the theoretical approxima-
tions made by Muthukumar are capturing the essentials of single
chain crystal melting. One could argue that our data are for a much
shorter chain length as the data presented by Muthukumar, but the
relative stem length versus relative super cooling representation
hints even to the occurrence of universal behavior independent of
chain length. Moreover, in Fig. 13 we compare the absolute value of
the equilibrium thickness obtained in our simulation at the equi-
librium transition temperature T"=4.23 with the data of Muthu-
kumar for the equilibrium thickness at the equilibrium melting
temperature obtained for much higher chain lengths. Clearly, our
result seems to be in excellent agreement with the results of
Muthukumar. We believe this demonstrates the accuracy of our
simulation data and that the approach of Muthukumar captures the
essence of the single chain folded crystals.

The observed increase in lamellar thickness with decreasing
super cooling in the previous conventional MD studies are very
likely a result of the chain being trapped in a local minimum of the
rugged phase space landscape not being able to overcome the high
energy barriers in the available simulation time. Therefore in
a conventional MD simulation we may not expect to get correct
ensemble averaged sampling.

4. Conclusion

In the present work, we have re-investigated the long-standing
topic of the single chain and re-interpreted thermodynamic data
against some recently developed theory. A polyethylene chain with
N =200 CH> units was simulated using replica exchange molecular
dynamics. Simulations were performed in a broad temperature
range covering both the coil-to-globule and the globule-to-chain
folded crystal transition of the polymer chain and for intra-chain
interactions varying from the fully interacting to the ideal spring
chain. The REMD provided reliable simulation data on the equi-
librium properties of the polymer chain at all temperatures, which
is not easy to achieve in conventional MD or MC simulations as they
get easily trapped in local minima separated by large energy
barriers. This work demonstrates that REMD is a very efficient
method to obtain equilibrium data.

In the analysis of the simulation data we focus on the thermo-
dynamics, chain conformational properties and the transitions
between the different conformational states.

Thermodynamic properties, including the potential energy
density distributions, isothermal heat capacities, the absolute free
energy, entropy and internal energy of the chain molecule are
obtained and discussed. It is found that the coil-to-globule transi-
tion is dominated by the vdW energy, whereas the globule-to-fol-
ded chain transition is accompanied by transitional behavior in the
torsional energy — creating long all-trans stems in the chain folded
state- and in the vdW energy-attributed to non-bonded interac-
tions between the segments in the aligned all-trans stems.

Our data clearly show that for the interaction potential model and
chain length considered here, the chain folded crystal to globule
transition is not a first order transition but is a continuous transition
with smoothed steps in entropy and internal energy at the transition
temperature. Nevertheless, from all studied chain properties we
obtain the same value for the transition temperature, which allows
us to establish with good accuracy the equilibrium transition
temperature for the chain folded crystal to globule transition.
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A set of orientational order parameters has been determined
and was used to investigate the order in the polymer chain. At the
globule-to-folded chain transition an abrupt change in the value of
the order parameter is observed, whereas there is no or almost no
change in the value of the order parameter at the coil-to-globule
transition temperature. Some frequently used order parameters
(OP4, OPs3, 43, A3) also give at the highest temperatures (where we
expect no order in the chain conformation) a non-zero value for the
order parameter. The order parameter OP3 predicts in addition
significant order also in the globular state whereas the other order
parameters (OP;, OP,, 42, A3) only show a steep change in the order
parameter going from the folded chain to the globule and expanded
coil states. Only the order parameter OP, approaches asymptoti-
cally zero-order at high temperatures, which makes it most likely to
be preferred to discuss the order in the chain conformation. The
(apparent) order in the disordered globular and coiled states indi-
cated by some of the studied order parameters is related to the
definition of the order parameter and will depend on the chain
length of the polymer.

The radius of gyration and its principal components show two
transition temperatures for a PE chain with the lower transition
temperature corresponding to the folded chain lamella to chain
globule transition and the higher transition temperature corre-
sponding to the globule-to-coil transition. The radius of gyration
and its largest principal component decrease with increasing
temperature. In earlier simulations the radius gyration and its
largest principal component slightly increased or remained
constant with temperature. This was interpreted to be in agreement
with the results expected from classical crystallization theories.

In agreement with the temperature dependence found for the
(largest principal component of the) radius of gyration, it is found
that below the equilibrium melting temperature of the single chain
crystal, the equilibrium lamellar thickness of the folded chain
crystal decreases with increasing temperature, which is opposite to
the prediction of classical crystallization theories but complies with
the recent theories of Muthukumar [83] and Larini et al. [19]. The
agreement between the simulations and the theoretical predictions
are semi-quantitative and may even hint to universal behavior of
the relative equilibrium chain folded crystal thickness and the
relative super cooling. Our results give support to the theory of
Muthukumar and the theoretical approximations made to predict
the equilibrium properties of the chain folded crystal as a function
of super cooling and chain length.
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